
COST-EFFECTIVE DATA-PARALLEL LOAD BALANCING

James P. Ahrens Charles D. Hansen
Dept. of Computer Science & Engineering Advanced Computing Laboratory

University of Washington Los Alamos National Laboratory
Seattle, Washington 98195 Los Alamos, New Mexico 87545
ahrens@cs.washington.edu hansen@acl.lanl.gov

Abstract – Load balancing algorithms improve a pro-
gram’s performance on unbalanced datasets, but can de-
grade performance on balanced datasets, because unnec-
essary load redistributions occur. This paper presents
a cost-effective data-parallel load balancing algorithm
which performs load redistributions only when the possi-
ble savings outweigh the redistribution costs. Experiments
with a data-parallelpolygon renderer show a performance
improvement of up to a factor of 33 on unbalanced datasets
and a maximum performance loss of only 27 percent on
balanced datasets when using this algorithm.

1. INTRODUCTION
Load balancing algorithms provide the basis for effi-

cient parallel solutions to many important computational
problems including the n-body problem, polygon and vol-
ume rendering, and optimization problems. The comple-
tion time of these parallel solutions depends on the com-
pletion time of the processor with the maximum computa-
tional workload. Load balancing algorithms attempt to dis-
tribute the computational workload evenly among all pro-
cessors. This reduces the maximum workload on any pro-
cessor and thus reduces the completion time of the parallel
solutions.

A significant problem when using a load balancing al-
gorithm is the possibility that along with improving per-
formance on some datasets it will degrade performance on
others. Wikstrom et al. [1] use a computation model and
experimental results to present evidence that using a load
balancing algorithm does not always improve a program’s
performance. The authors show the execution time of a
load-balanced version of a program can substantially ex-
ceed the execution time of the original version of the same
program. This is because the costs of load redistributions
can exceed the savings achieved by the redistributions.

Other researchers have studied the problem of decid-
ing when to balance with different workloads and prob-
lem types. Nicol and Townsend [2] describe a partitioning
strategy which uses performance measurements to decide
how to partition an irregular grid among processors. Nicol
and Reynolds [3] describe a data-parallel load balancing al-
gorithm which is targeted for applications with uncertain
behavior. The algorithm uses a probabilistic model of the
cost of delay and the benefits of balancing to decide when

to run a single balancing operation.
In this paper, a load balancing algorithm is described

which uses a prediction of the costs and calculation of
the possible savings to decide when redistribution is cost-
effective. A major advantage of utilizing a cost-effective
load balancing algorithm is that the execution time of a
load-balanced version of a program is never significantly
worse than the execution time of the original version of the
same program. This result depends only on never underes-
timating the costs of load balancing.

In Section 2, the type of workloads and programs the
load balancing algorithm works with is presented along
with a high-level description of the load balancing algo-
rithm. Section 2 also describes when and how load bal-
ancing occurs. Section 3 presents a performance study of a
data-parallel rendering program to which the load balanc-
ing algorithm has been applied. Section 4 concludes.

2. THE LOAD BALANCING ALGORITHM
The load balancing algorithm can be applied to data-

parallel programs which compute the solutions of a col-
lection of independent tasks. The tasks are independent in
time; they do not have to execute in any specific order and
there are no data dependencies between the tasks. A set of
tasks can share the same read-only problem data. An exam-
ple of how a set of tasks share the same problem data oc-
curs in the polygon rendering application. Multiple tasks
are used to process a row of pixels. Each task computes
the solution for one pixel in the row. The pixel’s location
is computed by adding an offset to the row’s initial pixel
location. The initial pixel location is stored as part of the
problem data.

For the following discussion, we assume a virtual pro-
cessing facility provides the abstraction of having one vir-
tual processor assigned to each data element of a par-
allel array. In a prototypical program, each processor
is assigned problem data and its associated tasks. A
processor’s workload is the number of tasks associated
with its assigned problem data. Values in the range
1::number of tasks are used as indices to refer to these
tasks. A task’s index is used to calculate the specific prob-
lem data on which the task computes. In the pixel process-
ing example described above, the task index is used as an
offset; task i processes the ith pixel location. The prob-



<initial instructions>
forloop index = 1, MAX(workload) f

WHERE (index � workload) f
Solution Phase(index)gg

<further instructions>

Figure 1: A prototypical program to be augmented with the
load balancing algorithm

lem data and workload are stored in parallel arrays named
problemdataand workload.

In order to process the tasks, the program increments a
global task index counter, index, which starts at 1 and ends
at the maximum workload of all the processors. During
each iteration of the global index, each processor checks if
they have a task with that index, and if they do, they com-
pute a solution for the task. The instructions used to com-
pute the solutionof a multiple tasks in parallel are called the
solution phase. A pseudo-code description of a prototyp-
ical program is shown in Figure 1. Note that the WHERE
statement activates processors for which the test is true and
idles processors elsewhere.

As the computation proceeds, more and more proces-
sors complete the processing of their tasks and remain idle
for the rest of the loop iterations. These processors are
then termed idle processors. Processors which have tasks
to complete are termed activeprocessors. Processors are
idled because all processors must process tasks with the
same task index at the same time.

To improve the program’s performance, the program is
modified so that tasks with different indices can be pro-
cessed at the same time. The load balancing algorithm then
distributes tasks from heavily loaded active processors to
idle processors and tries to balance the workload among all
processors.

How a program is augmented with the load balanc-
ing algorithm is now described. The load balancing al-
gorithm consists of three distinct phases: the information
gathering phase, the decision phase which decides when
load balancing should occur and the redistribution phase
which distributes tasks from active processors to idle pro-
cessors. The basic iteration structure of the program is pre-
served. At the beginning of each iteration, the informa-
tion gathering phase is executed. Then the decision phase
is run, utilizing the gathered information to decide if bal-
ancing should occur during this iteration. If the decision
is to balance, the redistribution phase is run, moving prob-
lem data from active to idle processors and assigning these
idle processors new task indices to process. When tasks are
distributed, the task indices originally assigned to an ac-
tive processor can be assigned to multiple idle processors.
Thus, different processors can work on different task in-
dices during the same iteration. In the pixel processing ex-
ample, this could mean, for example, that the first 3 pixels
of one processor’s row are processed along with the first 5

<initial instructions>
loop f

Information Gather Phase
IF (Decision Phase returns TRUE) THEN f

Redistribution Phase g
WHERE (workload > 0) f

Solution Phase(parallel index)
workload = workload - 1 gg

until (All elements of workload = 0)
<further instructions>

Figure 2: A prototypical load-balanced program

pixels of another processor’s row. A parallel array, named
parallel index, is used to keep track of the current task in-
dex computed by each processor. A pseudo-code descrip-
tion of a prototypical load-balanced program is shown in
Figure 2.

Note that the execution time of both the original and
load-balanced prototypical programs presented in Figures
1 and 2 is proportional to the maximum number of tasks
assigned to any processor. The major difference between
the programs, is the load-balanced program can reduce
the maximum number of tasks on any processor by re-
distributing the workload.

2.1 When to load balance

The information gathering phase creates a trial work-
load, named newworkload, which is used by the decision
phase to decide if redistributing load will be cost-effective.
This new workload contains a more balanced distribution
of tasks and therefore has a smaller maximum number of
tasks on any processor than the original workload. From
this new workload a measure of the possible savings is cal-
culated as the maximum number of tasks on any processor
in the original workload minus the maximum number of
tasks on any processor in the new workload. This is shown
in the equation below:

savingsin iterations =
MAX(workload) �MAX(new workload)

The savings are measured in terms of the number of future
iterations of the loop which will execute the solution phase.
The maximum number of tasks in a workload dictates the
number of iterations that must be executed to process these
tasks. If the new distribution is used then these “saved” it-
erations will not have to be executed.

The costs of the load balancing algorithm are also mea-
sured. Since the savings are measured in terms of the num-
ber of iterations, the costs are converted to this unit as well.
The costs of the load balancing algorithm are incurred dur-
ing the execution of the information gathering phase and
redistribution phase. In order to quantify the costs of these
phases, duringeach iteration their execution times are mea-
sured. The execution time of the solution phase during
each iteration is also measured. timeinfo, timeredis and
timesoln are the execution times of one execution of the



information gathering, redistribution and solution phases.
An estimate of the load balancing cost in terms of number
of iterations can then be calculated by multiplying the sum
of the execution time of the information gathering and re-
distribution phases by the inverse of the execution time of
the solution phase, as shown in the equation below:

costs in iterations = (timeinfo+timeredis)�
1 iteration

timesoln

In order to provide a guarantee that the load balancing al-
gorithmwill always make cost-effective load balancing de-
cisions, this cost measure must not be underestimated. Ini-
tial runs of the load-balanced program on various datasets
are used to compute an overestimated cost measurement.
The longest information gathering time of any iterationand
redistribution time of any iteration are then divided by the
shortest solution time of any iteration for each dataset. The
largest of the resulting cost measures provides an estimate
of an upper bound on the load balancing cost in terms of
iterations. To this initial estimate a constant is added to as-
sure the cost measure will always be an overestimate. This
overestimate is then used in all future runs of the load bal-
anced program.

Utilizing the overestimated costs and the calculated sav-
ings a cost-effective load balancing decision is then made
by the decision phase. If the savings are greater than the
costs then the redistribution phase is executed. Since each
load balancing decision results in a cost-effective iteration,
the sum of these decisions results in a cost-effective pro-
gram execution.
2.2 How to load balance

An efficient redistribution algorithm is essential for
good performance. Biagioni and Prins [4] and Nicol [5]
describe efficient data-parallel redistribution algorithms
which use scan communication routines to organize data
movement. Our algorithm also uses scans to organize data
movement. In our redistribution algorithm, workload is
distributed by copying problem data from heavily loaded
active processors to idle processors. The workload, in the
form of task indices, is then divided up and assigned to the
active and idle processors with copies of the problem data.
Each active processor’s workload is assigned some num-
ber of idle processors. This assignment is computed by as-
signing the idle processors in proportion to the workload
on each active processor. Thus, heavy workloads are as-
signed more idle processors than light workloads and load
is balanced evenly. A more detailed description of the re-
distribution algorithm is presented in [6].

3. A PERFORMANCE STUDY
The load balancing algorithm has been added to a data-

parallel polygon renderer [7]. A series of experiments were
executed using the original and a load balanced version of
the renderer. The steps taken by the renderer include: scan
conversion, which maps the polygons onto the rows (scan

lines) of the resulting image and z-buffering, which maps
the scan lines into pixels of the image. In the original ver-
sion of the renderer, the scan conversion and z-buffering
steps were implemented using data-parallel loops of the
form shown in Figure 1. In the load balanced version, the
steps were implemented using load balanced data-parallel
loops of the form shown in Figure 2. For the scan conver-
sion loop, the problem data is polygons and each task con-
sists of creating and processing a scan line from a polygon.
The number of scan lines in a polygon is dependent upon
its image-space height. In the z-buffering loop, the prob-
lem data is scan lines and each task consists of creating and
processing pixels from a scan line. The number of pixels
in a scan line is dependent upon its length. For all the ex-
periments, the renderer generates output images which are
512 � 512 pixels in size. The experiments were executed
on the Advanced Computing Laboratory’s 1024 processor
CM-5 at Los Alamos National Laboratory.

Table 1: The Maximum and Average Workloads for the
Scan Conversion Loop for the Balanced and Unbalanced
Datasets

Balanced Unbalanced
View Max Avg Max Avg
(0,0) 8 5 231 6

(45,45) 10 5 169 6
M(0,0) 13 5 512 8

M(45,45) 21 1 468 4

In the first experiment, performance data for the orig-
inal and load balanced renderers is presented. The poly-
gon datasets used in this experiment are a balanced and
unbalanced version of the same scientific output, a hydro-
dynamics simulation of an oil well perforator. The rela-
tive balance of a polygon dataset is dependent upon the
type of algorithm used to generate the dataset, the viewing
and magnification transformations applied to the dataset,
and the number of its polygons which have been clipped
from view. Table 1 presents the maximum and average
workloads of these datasets for the scan conversion loop.
The first column of the table lists the viewing and magni-
fication transformations that were applied to the datasets.
The “M” before the viewing angle means the dataset has
been magnified. Notice in the balanced datasets the differ-
ence between the maximum and average workload is small,
whereas in the unbalanced datasets the difference is large.

On the unbalanced datasets, the decision phase and the
redistribution phase work together to effectively to im-
prove the renderer’s performance. Table 2 shows the re-
sults of rendering the unbalanced polygons with (LB) and
without (OR) the assistance of the load balancing algo-
rithm on 32, 64, 128, 256 and 512 processors of the CM-5.
Notice the poor performance of the original renderer on the
unbalanced datasets and the improvement obtained when



Table 2: Rendering of Unbalanced Datasets in Seconds
32 64 128 256 512

View OR LB OR LB OR LB OR LB OR LB

(0,0) 48.91 6.21 28.98 3.57 18.18 2.12 12.76 1.35 9.99 0.92
(45,45) 38.03 5.33 22.37 3.00 14.27 1.78 10.45 1.15 8.24 0.81
M (0,0) 109.64 10.62 65.50 5.90 41.74 3.40 30.12 2.16 23.92 1.46

M (45,45) 99.13 4.42 57.91 2.42 37.19 1.46 27.33 0.94 22.40 0.67

Table 3: Rendering of Balanced Datasets in Seconds
32 64 128 256 512

View OR LB OR LB OR LB OR LB OR LB

(0,0) 4.71 5.16 2.67 2.95 1.57 1.72 0.88 1.00 0.54 0.64
(45,45) 5.49 6.12 2.98 3.33 1.69 1.89 0.99 1.13 0.62 0.73
M (0,0) 10.61 12.47 5.80 6.77 3.18 3.73 1.82 2.21 1.11 1.40

M (45,45) 12.27 13.43 6.69 7.34 3.74 4.12 2.24 2.50 1.51 1.65

using the load balancing algorithm. The performance of
the load-balanced renderer provides a factor of 8 to 33 im-
provement over the performance of the original renderer on
the unbalanced datasets.

Table 3 shows the results of rendering the balanced
polygons with and without the assistance of the load bal-
ancing algorithm on 32, 64, 128, 256 and 512 processors.
Notice that when the load balanced renderer is applied to
the balanced datasets its performance is approximately the
same as the original renderer. It is difficult for a load bal-
ancing algorithm to provide good performance on a bal-
anced dataset since any redistribution steps will simply
waste time. The worst case empirical performance loss is
only 27 percent on balanced datasets when using the load
balancing algorithm.

The original renderer’s performance on the balanced
datasets provides an estimate of the target performance we
would like to achieve with the addition of a load balancing
algorithm. The performance of the load-balanced renderer
on the unbalanced datasets is within 70 percent of the per-
formance of the original renderer on the balanced datasets.

In a second experiment, three other polygon datasets
were tested. Two datasets were generated from different
outputs of a fluid-dynamics simulation and the other from
the output of a particle interaction simulation. Two of the
the datasets are balanced and one is unbalanced. In sum-
mary, performance improvements ranged from a factor of
4 to 33 and the worst case empirical performance loss is
only 25 percent.

4. CONCLUSIONS
A significant problem when using a load balancing al-

gorithm is the possibility that along with improving per-
formance on some datasets it will degrade performance on
others. In this paper, a data-parallel load balancing algo-
rithm was described which will not substantially degrade a
program’s performance on any dataset. This property re-

sults from utilizing an empirical measurement of the cost
of load balancing along with a calculation of the possible
savings to restrict load balancing to only when it is cost-
effective.
Acknowledgments This research was performed at the
Advanced Computing Laboratory of Los Alamos National
Laboratory, Los Alamos, NM 87545.

REFERENCES
[1] M. C. Wikstrom, G. M. Prabhu, and J. L. Gustafson.

Myths of load balancing. In Parallel Computing ’91,
pages 531–549, 1991.

[2] D. M. Nicol and J. C. Townsend. Accurate modeling of
parallel scientific computation. In Proceedings of the
1989 SIGMETRICS Conference, pages 165–170, May
1989.

[3] D. M. Nicol and P. F. Reynolds Jr. Optimal dynamic
remapping of data parallel computations. IEEE Trans-
actions on Computers, 39(2):206–219, February 1990.

[4] E. S. Biagioni and J. F. Prins. Scan directed load
balancing for highly parallel mesh-connected parallel
computers. In Unstructured Scientific Computation
on Scalable Multiprocessors, pages 371–95, October
1990.

[5] D. M. Nicol. Communication efficient global load bal-
ancing. In Proceedings of the Scalable High Perfor-
mance Computing Conference, pages 292–299, April
1992.

[6] J. P. Ahrens and C. D. Hansen. Cost-effective data-
parallel load balancing. Technical Report TR-95-04-
02, University of Washington, 1995.

[7] F. A. Ortega, C. D. Hansen, and J. P. Ahrens. Fast data
parallel polygon rendering. In Proceedings of Super-
computing ’93, pages 709–718, November 1993.


	1. INTRODUCTION
	2. THE LOAD BALANCING ALGORITHM
	3. A PERFORMANCE STUDY
	4. CONCLUSIONS
	REFERENCES

